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COMPLICATED STRUCTURES OF GALILEAN-INVARIANT CONSERVATION LAWS

UDC 517.9:539.3S. K. Godunov and V. M. Gordienko

This paper continues previous investigation of Galilean-invariant equations of mathematical physics,
which was begun with the use of the Clebsch–Gordan coefficients from the theory of products of the
represented group SO(3). Complex systems of conservation laws and thermodynamic identities are
constructed. Concrete examples are given.

Introduction. The present paper is a continuation of [1], in which we are studying the thermodynamic
structures of the Galilean-invariant equations of mathematical physics which contain the laws of conservation of
mass, momentum, and energy and compensating entropy equations. In order that such equations reflect the contents
of the classical thermodynamic relations, a generating function L which depends on the required functions, vector-
functions, and temperature should be used in their formulation. This generating function plays the role of the
thermodynamic potential of the medium described by the equations. The conservation laws generated by such
thermodynamic potentials have been discussed in the literature since the 1960s (see [1] and references therein).
Unfortunately, the simplest structure of equations described in [1] does not cover all well-known examples from
classical mathematical physics, which have been studied extensively. Such examples are described in [2] and in the
last chapter of the monograph [3]. In particular, the equations of nonlinear elasticity and magnetic hydrodynamics
do not fit into the simplest structure. The more complicated constructions of conservation laws proposed in the
present paper already include the above examples. The dissipative processes of diffusion, heat conduction, and
viscous friction are not considered here, except for one example.

The notation used herein is the same as in [1]. As in [1], we use the theory of orthogonal representations of
the rotation group SO(3), confining ourselves to odd-dimensional one-valued representations of integer weights N .

Complicated systems of equations are constructed in Sec. 2 from the initial simplest systems described in [1]
by adding special additional terms into the equations. These terms are chosen so that they do not violate the
conservation laws. The choice of possible terms is based on the collection of identities of generalized vector calculus
given in Sec. 1.

In Sec. 3, of all the complicated systems described, we consider only those systems for which we proved that
they can be written in the form of symmetric hyperbolic equations. Examples are given in which the equations
studied are replaced by overdetermined compatible systems of conservation laws. Here we use and develop the
scheme that was partly described in [3, 4]. Sec. 4 contains concrete examples of equations that enter into the
described class of complicated thermodynamically consistent (compatible) structures.

1. Generalized Vector Calculus. Just as in [1], we assume that rotations of the coordinate system
transform each of the unknown vector-functions q(A) by an irreducible representation of weight A of the group
SO(3). We specify a coordinate vector x of three-dimensional space by its Cartesian components x−1, x0, and x1.
A vector-function q(N) has 2N + 1 real components q(N)

n (n = −N,−N + 1, . . . , −1, 0, 1, . . . , N − 1, and N).
Rotations of the coordinate system are specified by an orthogonal matrix P with positive determinant (PtP = I3
and det P = +1); in this case, x is replaced by x̂ = Px. In such a rotation, the vector-function q(N) is transformed
into q̂(N) = Ω(N)(P)q(N) by means of a standard (2N + 1) × (2N + 1) matrix Ω(N)(P) which implements the
representation. By the definition of representations, Ω(N)(I3) = I2N+1 and Ω(N)(P1 · P2) = Ω(N)(P1) · Ω(N)(P2).
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A rotation P is usually specified by Euler’s angles ϕ, θ, and ψ:

P =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .
Explicit formulas for the entries of the matrix Ω(N)(P), which express these entries in terms of Euler’s

angles ϕ, θ, and ψ, are given at the end of our previous paper [1] and are justified in [5]. It was noted there that
Ω(1)(P) ≡ P.

We formulate the basic statements of the theory of Kronecker products of irreducible representations of
the rotation group. Let p(L) and r(M) be vectors of dimensions 2L + 1 and 2M + 1 which, in rotations, are
transformed by irreducible representations of weights L and M . The Kronecker product of these vectors is a
rectangular (2L+ 1)× (2M + 1) matrix Π with the entries Πlm = p

(L)
l · r

(M)
m . This matrix can be treated as a vector

of dimension (2L+ 1)× (2M + 1).
In rotations x̂ = Px, the vector Π transforms into Π̂ by transformations that correspond to a certain

representation of the rotation group. Such a representation is called the Kronecker product of representations of
weights L and M . If we consider that the scalar product in the space of (2L + 1) × (2M + 1) matrices is given
by the formula (Φ,Π) =

∑
l,m

ΦlmΠlm = tr(ΦΠt), then the Kronecker product of orthogonal representations is also

orthogonal, but if neither of the weights L and M is equal to zero, then it turns out to be reducible. It can be
decomposed into a direct sum of irreducible orthogonal representations of weights |L−M |, |L−M |+1, |L−M |+2,
. . ., L + M − 1, and L + M . The decomposition is implemented with the use of the so-called Clebsch–Gordan
coefficients. It is reasonable to arrange these coefficients as matrix entries of special matrices. We shall refer to
these matrices as Clebsch–Gordan matrices. Each such (2L+ 1)× (2M + 1) matrix GkK[L,M ] is composed of entries

G
k[l,m]
K[L,M ], where the superscripts l and m (−L 6 l 6 L and −M 6 m 6 M) specify the numbers of the row and

column on whose intersection this entry stands. The indices K and k number the matrices. The subscript K
(|L −M | 6 K 6 L + M) is the weight of an irreducible representation and the superscript k is the number of a
matrix which is a canonical basis element in the (2K+1)-dimensional subspace of matrices that transform according
to a representation of weight K (−K 6 k 6 K).

There is some arbitrariness in the choice of canonical bases. The basis used here ensures the equality
GkK[L,M ] = (−1)K+L+M{GkK[M,L]}

t, (1.1)
i.e., permutation of the subscripts in the square brackets leads to transposition of the Clebsch–Gordan matrix and
in the case where the sum K + L + M is odd, to inversion of the signs of all entries. It is worth noting that the
conditions of orthonormalization

tr {GkK[L,M ] · [G
n
N [L,M ]]

t} = δKN · δkn (1.2)

can also be written as
l=L,m=M∑

l=−L,m=−M

G
k[l,m]
K[L,M ] ·G

n[l,m]
N [L,M ] = δKNδkn.

We give several useful equalities:

G
0[λ,l]
0[L,L] = δλl/

√
2L+ 1,

(1.3)

G
k[l,m]
K[L,M ] =

√
(2K + 1)/(2M + 1) Gm[k,l]

M [K,L] = (−1)K+L+M
√

(2K + 1)/(2L+ 1) Gl[k,m]
L[K,M ].

Writing the Kronecker product of the vectors p(L) and r(M) in the form of a linear combination of the basis
Clebsch–Gordan matrices

[p(L) × r(M)] =
K=L+M∑
K=|L−M |

(
k=K∑
k=−K

w
(K)
k GkK[L,M ]

)
,

it is reasonable to group the coefficients w(K)
k of this linear combination into vectors w(K) of dimensions 2K + 1.

By virtue of (1.2), the components of these vectors are calculated by the rule

w
(K)
k = tr {[p(L) × r(M)] · [GkK[L,M ]]

t}. (1.4)
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A rotation x̂ = Px of the coordinate system transforms the vectors p(L) and r(M) by the transformations
p̂(L) = Ω(L)(P)p(L) and r̂(M) = Ω(M)(P)r(M), and this induces transformations of the vectors ŵ(K) = Ω(K)(P)w(K).
These transformations correspond to irreducible representations of the corresponding weights. It is reasonable to
introduce the notation

w(K) = [p(L) × r(M)](K) (1.5)

and call [p(L) × r(M)](K) the vector product of weight K of the vectors p(L) and r(M). We recall that |L−M |
6 K 6 L + M or, which is the same, K 6 L + M , L 6 M + K, and M 6 K + L (the triangle inequalities). The
vector product of weight 0 differs only by a factor from the scalar product of vector multipliers, which should have
the same dimension (same weight):

[p(L) × r(L)](0) =
1√

2L+ 1
(p(L), r(L)) =

1√
2L+ 1

l=L∑
l=−L

p
(L)
l r

(L)
l . (1.6)

The following rule of permutation of multipliers follows from (1.1):

[p(L) × r(M)](K) = (−1)K+L+M [r(M) × p(L)](K).

In a natural way we introduce a generalized mixed product of three vectors of dimensions 2K + 1, 2L + 1,
and 2M + 1 that is invariant under rotations:

(u(K),v(L),w(M)) = [u(K) × [v(L) ×w(M)](K)](0). (1.7)

This product is meaningful if the weights K, L, and M satisfy the triangle inequalities. The generalized mixed
product of the same multipliers is defined for every their order. When two vectors are interchanged, this product
is multiplied by (−1)K+L+M :

(v(L),u(K),w(M)) = (u(K),w(M),v(L)) = (−1)K+L+M (u(K),v(L),w(M)) = (w(M),v(L),u(K))

or, which is the same,

[v(L) × [u(K) ×w(M)](L)](0) = [u(K) × [w(M) × v(L)](K)](0)

= (−1)K+L+M [u(K) × [v(L) ×w(M)](K)](0) = [w(M) × [v(L) × u(K)](M)](0). (1.8)

The validity of the above equalities follows from (1.1) and (1.3). The properties of the Clebsch–Gordan coefficients
used above follow from analysis of their generating function.

Unfortunately, in the literature on the theory of representations of the rotation group, we were able to find
the theory of the Clebsch–Gordan coefficients only for unitary representations. Thus, we had to study the case
of orthogonal representations by introducing the corresponding changes into the unitary theory. As a result, we
have obtained the generating function for the coefficients used in this study and have justified all their properties
necessary for us. We are planning to publish this study in a separate paper.

The generalized formulas of vector calculus necessary for our purposes include matrices GkK[L,M ] in which
K, L, and M are one or another permutation of a triple 1, N,N − 1 or a triple 1, N,N . We give all nonzero entries
of the matrices Gi1[N,N−1] and the formulas relating these matrices to the matrices Gj1[N,N ].

In permutation of the integer parameters K, L, and M , the matrices transform by the rules (1.1) and (1.3).
Below we give the nonzero entries Gi[n,m]

1[N,N−1]:

G
1[±(k−1),±k]
1[N,N−1] = G

−1[±k,∓(k−1)]
1[N,N−1] =

1
2

√
3(N − 1)(N − k + 1)
N(2N − 1)(2N + 1)

(2 6 k 6 N − 1),

±G1[±k,∓(k−1)]
1[N,N−1] = G

−1[±(k−1),∓k]
1[N,N−1] = ±

√
3(N + k)(N + k − 1)
N(2N − 1)(2N + 1)

(2 6 k 6 N − 1),

G
1[±N,±(N−1)]
1[N,N−1] =

√
3

2(2N + 1)
, G

−1[−1,0]
1[N,N−1] = G

1[1,0]
1[N,N−1] =

√
3(N + 1)

2(2N − 1)(2N + 1)
,

G
−1[0,−1]
1[N,N−1] = G

1[0,1]
1[N,N−1] = −

√
3(N − 1)

2(2N − 1)(2N + 1)
.
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The matrices Gi1[N,N ] are calculated by the formula

Gi1[N,N ] =
√
N(2N + 1)/(3(N + 1)) [Gk1[N,N−1]G

j
1[N−1,N ] −G

j
1[N,N−1]G

k
1[N−1,N ]],

where the superscripts i, j, and k run over one of the following triples: (−1, 0, 1), (0, 1,−1), or (1,−1, 0).
In what follows, we shall assume that the vectors considered depend on the spatial coordinates x−1, x0, and x1

of some parametric 3D space, i.e., we consider vector fields f (N)(x−1, x0, x1). We introduce a vector operator —
the gradient operator

∇ ≡ ∇(1) =
( ∂

∂x−1
,
∂

∂x0
,
∂

∂x1

)t

and decompose the field of derivatives of the vector f (N) into three fields which, under rotations of the coordinate
space, transform according to irreducible representations of weights N − 1, N , and N + 1. Such a decomposition is
implemented using the operator equalities

p(N−1) = [∇× f (N)](N−1), q(N) = [∇× f (N)](N), r(N+1) = [∇× f (N)](N+1),

which generalize the well-known rules of the classical vector calculus concerning the action of divergence, curl, and
gradient operators.

The operator equalities are written in coordinate form using the Clebsch–Gordan coefficients. This form
formally extends definitions (1.4) to the operator case.

Using the vector gradient operator ∇ and formulas (1.8) for M = 1, we obtain the following formulas of
invariant differentiation:

[∇× [u(K) × v(L)](1)](0) = [v(L) × [∇× u(K)](L)](0) + (−1)K+L+1[u(K) × [∇× v(L)](K)](0). (1.9)

The weights K and L should satisfy the inequalities |K − L| 6 1 and K + L > 1. In fact, formula (1.9) contains
formulas of three types for L = K − 1, L = K, and L = K + 1.

We give one more formula of differentiation of the double product. In formula (1.9), replacing u(K) by
[p(L) × q(M)](K) and v(L) by v(1), we obtain

[∇× [[p(L) × q(M)](K) × v(1)](1)](0) = [v(1) × [∇× [p(L) × q(M)](K)](1)](0)

+ (−1)K [[p(L) × q(M)](K) × [∇× v(1)](K)](0).

Using property (1.8), we transform the second term on the right side of the above equality:

[[p(L) × q(M)](K) × [∇× v(1)](K)](0) = [p(L) × [q(M) × [∇× v(1)](K)](L)](0).

We finally obtain

[∇× [[p(L) × q(M)](K) × v(1)](1)](0) = [v(1) × [∇× [p(L) × q(M)](K)](1)](0)

+ (−1)K [p(L) × [q(M) × [∇× v(1)](K)](L)](0). (1.10)

In (1.10), the weight K can take values K = 0, 1, and 2 and, moreover, the triple K, L, M should satisfy the
triangle inequalities.

For the applications considered in Sec. 2, based on (1.6)–(1.8), it is convenient to write identities (1.9)
and (1.10) with the use of the symbol of scalar product:

∂

∂xj
[u(K) × v(L)](1)

j ≡
√

3[∇× [u(K) × v(L)](1)](0)

=
√

3/(2L+ 1) (v(L), [∇× u(K)](L)) + (−1)K+L+1
√

3/(2K + 1) (u(K), [∇× v(L)](K)), (1.11)

∂

∂xj
[[p(L) × q(M)](K) × v(1)](1)

j = (v(1), [∇× [p(L) × q(M)](K)](1))

+ (−1)K
√

3/(2L+ 1) (p(L), [q(M) × [∇× v(1)](K)](L)). (1.12)

Along with the vector-functions q(N)(x−1, x0, x1) transformed by irreducible representations, it is sometimes
useful to consider tensor-functions of the second rank q(1,N) with the components q(1,N)

in (x−1, x0, x1) (−1 6 i 6 1 and
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−N 6 n 6 N). In this case, unlike in the adopted practice, the first and second subscripts can run over different sets
of admissible values. A rotation x̂ = Px is associated with the transformation q̂

(1,N)
in =

∑
k,m

Ω(1)
ik (P)Ω(N)

nm (P)q(1,N)
km ,

i.e., the tensor-functions transform according to the product of representations of weights 1 and N . This represen-
tation is reducible and can be decomposed into a direct sum of irreducible representations of weights N −1, N , and
N + 1, but we shall not make this decomposition.

Proceeding to derivation of the necessary identities, we make use of three elementary equalities, which are
checked directly:

∂

∂xk
(uiqipk) = qipk

∂ui
∂xk

+ ui
∂(qipk)
∂xk

, (1.13a)

∂

∂xk
(ukqipi) = uk

∂

∂xk
(qipi) + qipi

∂uk
∂xk

, (1.13b)

∂

∂xk
(uiqkpi) = qkpi

∂ui
∂xk

+ ui
∂(qkpi)
∂xk

. (1.13c)

Assuming that summation is made over pairs of the same indices i, k = −1, 0, 1, we leave equality (1.13a) unchanged
and replace some umbral subscripts in (1.13b) and (1.13c):

∂

∂xk
(ukpiqi) = ui

∂

∂xk
(δikqjpj) + qi

(
pi
∂uk
∂xk

)
, (1.13b′)

∂

∂xi
(qkuipi) = ui

∂(piqk)
∂xi

+ qipk
∂uk
∂xi

. (1.13c′)

We consider the vector u ≡ u(1) and the second-rank tensors q(1,N) and p(1,N) with the components ui, q
(1,N)
kn , and

p
(1,N)
jn , respectively. From (1.13a), (1.13b′), and (1.13c′), adding the missing subscript n to the functions qk and pj

and assuming the summation over n from −N to N , we can derive the necessary equalities:

∂

∂xk
(uiq

(1,N)
in p

(1,N)
kn ) = q

(1,N)
in p

(1,N)
kn

∂ui
∂xk

+ ui
∂(q(1,N)

in p
(1,N)
kn )

∂xk
, (1.14)

∂

∂xk
(ukq

(1,N)
in p

(1,N)
in ) = ui

∂

∂xk
(δikq

(1,N)
jn p

(1,N)
jn ) + q

(1,N)
in p

(1,N)
in

∂uk
∂xk

, (1.15)

∂

∂xk
(uip

(1,N)
in q

(1,N)
kn ) = ui

∂

∂xi
(p(1,N)
in q

(1,N)
kn ) + q

(1,N)
in p

(1,N)
kn

∂uk
∂xi

. (1.16)

It is probable that equalities (1.14)–(1.16) can be obtained as combinations of identities of the form (1.11) and (1.12)
if we decompose the tensor-functions q(1,N) and p(1,N) into irreducible representations. We did not investigate this
problem.

Identities (1.11), (1.12), and (1.14)–(1.16), which will be referred to as the rules of generalized vector calculus,
will serve as the basis of our further constructions.

2. Construction of Complicated Systems. The simplest systems of Galilean-invariant thermodynami-
cally consistent equations, whose properties were discussed in detail in [1], are written as follows:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0 (conservation of mass),

∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0 (conservation of momentum),

∂Lq
∂t

+
∂(ukLq)
∂xk

= −ϕ, (2.1)

∂LT
∂t

+
∂(ukLT )
∂xk

=
qϕ

T
(entropy equation),

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0 (conservation of energy).
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In these equations, u−1, u0, and u1 are the velocity components, T is the temperature, q0 is a scalar variable,
whereas q is a variable (as a rule, a vector variable) of the same dimension as the right side ϕ, and qϕ is the
scalar product of vector multipliers. If we denote the components of the vectors q and ϕ by qγ and ϕγ , then the
potential L that generates system (2.1) should be given in the form of an “equation of state”:

L = L(q0, u−1, u0, u1, q, T ) ≡ L(q0, u−1, u0, u1, q1, q2, . . . , T ).

The Legendre transform of L is denoted by E:

E = q0Lq0 + u−1Lu−1 + u0Lu0 + u1Lu1 +
∑
γ 6=0

qγLqγ + TLT − L

≡ q0Lq0 + ukLuk + qγLqγ + TLT − L ≡ q0Lq0 + qLq + uLu + TLT − L.

The components of the vector ϕ in equations admissible from the viewpoint of thermodynamics should ensure the
positiveness of the right side of the penultimate equation of system (2.1) (the law of increase of entropy).

The law of conservation of energy [the last equation in (2.1)] is a consequence of all the remaining equations of
this system. In [1] it was shown that if the generating potential L remains invariant under rotations of the coordinate
axes and under their associated transformations of the vector-functions appearing in (2.1), then system (2.1) is also
invariant under rotations. It is also invariant under conversion to a coordinate system moving at constant velocity
relative to the initial coordinate system if

L = Λ(q0 + uiui/2, q, T ). (2.2)

In other words, under assumption (2.2) the system of equations (2.1) is Galilean-invariant.
We assume that the vector q is composed of scalar components, vector components q(A), and tensor com-

ponents q(1,A) with various weights A. Different components can have the same weight. We also note that under
rotations the components of the vectors Lu and Lq are transformed by the same representations as the corresponding
components of the vectors u and q.

We can now proceed to construction of complicated equations.
The equations are constructed from parts. One such part is the simplest system (2.1) and the other parts

are identities (1.11), (1.12), and (1.14)–(1.16). During construction, we introduce new terms that contain vector
derivatives of unknown vector-functions into an equation of the initial simplest system. In doing so, we ensure that
these terms are chosen from the aggregates entering in one or another identity and that, based on that identity, they
ensure exact fulfilment of the law of conservation of mass (in the initial formulation) and the laws of conservation
of momentum and energy. We always have to introduce additional terms into the energy fluxes, whereas additional
terms in the momentum fluxes are sometimes introduced and sometimes are not.

Let the initial system consist of equalities whose “integrating multipliers” are q0, ui, q(A), r(A), and T ,
respectively:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0,

∂Lq(A)

∂t
+
∂(ukLq(A))

∂xk
= −ϕ(A),

∂Lr(A)

∂t
+
∂(ukLr(A))

∂xk
= −ψ(A), (2.3)

∂LT
∂t

+
∂(ukLT )
∂xk

=
(q(A),ϕ(A)) + (r(A),ψ(A))

T
.

Taking a linear combination of these equalities with the “integrating multipliers” as coefficients, we obtain an
additional law of conservation of energy:

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0,

where

E = q0Lq0 + (u, Lu) + (q(A), Lq(A)) + (r(A), Lr(A)) + TLT − L.
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From this initial system we construct a complicated system which differs from the initial one in additional terms
that are introduced into the equations containing the derivatives of Lq(A) and Lr(A) with respect to t. Then, the
modified equations take the form

∂Lq(A)

∂t
+
∂(ukLq(A))

∂xk
+

δ
√

3√
2A+ 1

[∇× r(A)](A) = −ϕ(A),

(2.4)

∂Lr(A)

∂t
+
∂(ukLr(A))

∂xk
− δ

√
3√

2A+ 1
[∇× q(A)](A) = −ψ(A).

Here δ is an arbitrary constant multiplier. Obviously, the left sides of the modified equations retain the divergent
form.

If we repeat the derivation of the energy equation for the modified system described above, using a linear
combination of equations with the same “integrating multipliers,” then we obtain the equality

∂E

∂t
+
∂{uk(E + L) + δ[q(A) × r(A)](1)

k }
∂xk

= 0, (2.5)

which differs from the corresponding initial equality in having the components uk(E +L) in the energy flux vector
replaced by uk(E + L) + δ[q(A) × r(A)](1)

k . In derivation of (2.5) we used identity (1.11).
By virtue of the invariance under rotations of the additionally introduced terms, the modified system remains

rotationally invariant. The special dependence of the generating potential (2.2) on the velocity components ui and
the fact that the first equation of system (2.3) (the law of conservation of mass) is not changed in this modification
ensure the invariance of the modified equations in conversion to a moving coordinate system that moves at constant
velocity relative to the initial coordinate system (xk → xk − tUk and uk → uk − Uk). Here we do not dwell on
elementary verification of the above statement which, in essence, is not different from the verification made in [1]
for a simpler case. Here we need to use the fact that the new terms introduced in (2.4) are independent of uk.

Thus, the modification of the simplest equations described here does not lead to violation of their Galilean
invariance.

We consider another similar construction of complication of the initial system of equations whose unknowns
include the vector-functions q(A) and r(A+1) transformed by representations of integer weights A and A + 1 that
differ by 1:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0,

∂Lq(A)

∂t
+
∂(ukLq(A))

∂xk
= −ϕ(A),

∂Lr(A+1)

∂t
+
∂(ukLr(A+1))

∂xk
= −ψ(A+1),

∂LT
∂t

+
∂(ukLT )
∂xk

=
(q(A),ϕ(A)) + (r(A+1),ψ(A+1))

T
,

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0.

An additional law of conservation of energy obtained as a linear combination of the first five equations with the
coefficients q0, ui, q(A), r(A+1), and T is included in the system. Complication of this initial system will again be
made with the use of identity (1.11). Introducing additional terms into the equations containing the derivatives of
Lq(A) and Lr(A+1) with respect to time t, we write them as follows:

∂Lq(A)

∂t
+
∂(ukLq(A))

∂xk
+

δ
√

3√
2A+ 1

[∇× r(A+1)](A) = −ϕ(A),

(2.6)

∂Lr(A+1)

∂t
+
∂(ukLr(A+1))

∂xk
+

δ
√

3√
2A+ 3

[∇× q(A)](A+1) = −ψ(A+1).

The above modification of these two vector equations leads to modification of the energy equation:

∂E

∂t
+
∂{uk(E + L) + δ[q(A) × r(A+1)](1)

k }
∂xk

= 0.
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In the version of complication considered above, the Galilean invariance of the complicated system is proved by
verbal repetition of the same arguments as in the previous example. We note that in the versions of complication
of the initial system described here, no corrections were made in the equations modeling the laws of conservation
of mass and momentum.

The law of conservation of mass (the first of the equalities which appear in the modified system) is subjected
to correction only if the scalar q0 is chosen as q(A) in the second version of modification. We abandon such
modifications since the additional terms in the mass fluxes that arise from correction contradict the proof of the
invariance of the equations in conversion to a moving coordinate system (see [1, Sec. 1]).

In complications based on versions of identity (1.12), corrections appear in the momentum equations. We
give an example of complication based on a version of identity (1.12) with L = M = A and K = 1 [in the notation
of the velocity u, we omit the symbol that indicates the weight (1) of the representation]:

∂

∂xk
[[q(A) × Lq(A) ](1) × u](1)

k = (u, [∇× [q(A) × Lq(A) ](1)](1))−
√

3/(2A+ 1) (q(A), [Lq(A) × [∇× u](1)](A)).

We now give a complicated system that includes the equation of conservation of mass
∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,

the modified momentum equation
∂Lu
∂t

+
∂

∂xk

{
(ukL)u +

δ√
3

[∇× [q(A) × Lq(A) ](1)](1)
}

= 0,

the vector equation
∂Lq(A)

∂t
+
∂(ukLq(A))

∂xk
− δ

√
3√

2A+ 1
[Lq(A) × [∇× u](1)](A) = −ϕ(A),

which has lost the form of a conservation law since its left side is supplemented by a nondivergent term, whose each
component is a linear combination of the first derivatives of the velocity components, the compensating equation
for entropy

∂LT
∂t

+
∂(ukLT )
∂xk

=
(q(A),ϕ(A))

T
,

and the equality
∂E

∂t
+

∂

∂xk
{(E + L)uk + δ[[q(A) × Lq(A) ](1) × u](1)

k } = 0.

In the above list of equations, the last equation (the law of conservation of energy) is a consequence of the
preceding equations. The invariance of the equations under rotations of the coordinate system is beyond doubt.
The invariance under conversion to a moving (at constant velocity) coordinate system follows from the fact that in
making the complication we do not change the first equation (the law of conservation of mass), supplementing the
remaining equations (except for the last equation, which is a consequence of the preceding ones) with new terms
that are independent of the components uj or depend only on the derivatives ∂uj/∂xi. These derivatives do not
change when uj is replaced by uj + Uj (Uj = const). We recall (see [1, Sec. 1]) that in the proof of invariance, we
have to add the equation of conservation of mass (which is not modified) multiplied by constant coefficients to the
momentum equations. Naturally, the invariance is only due to the fact that the generating potential (2.2) is given
by a function that is invariant under rotations. After similar transformations, other versions of identities united by
equality (1.5) lead to new versions of Galilean-invariant complicated systems. We shall not dwell on this now.

We now turn to modifications which are based on identities (1.14)–(1.16). In this case, it is natural to use
the generalized tensor notation described in Sec. 1.

We use the system
∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
= −ϕ(1,A)

ja ,
∂LT
∂t

+
∂(ukLT )
∂xk

=
q

(1,A)
ja ϕ

(1,A)
ja

T
, (2.7)

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0

as the initial system and introduce additional terms into the left sides of some equations.
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We assume that the result of the modification is as follows:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[(ukL)ui − q

(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
− L

q
(1,A)
ka

∂uj
∂xk

= −ϕ(1,A)
ja ,

∂LT
∂t

+
∂(ukLT )
∂xk

=
q

(1,A)
ja ϕ

(1,A)
ja

T
, (2.8)

∂E

∂t
+
∂[uk(E + L)− uiq(1,A)

ia L
q
(1,A)
ka

]

∂xk
= 0.

Just as in the initial system (2.7), the last equation in the modified system is a linear combination of the preced-
ing equations with the coefficients q0, ui, q

(1,A)
ja , and T , respectively. To justify this statement, we need to use

identity (1.14) after making the following change of notation in that identity:

N → A, n→ a, p
(1,N)
kn → L

q
(1,A)
ka

, q
(1,N)
in → q

(1,A)
ia .

We note that the equations on the left of the second line of system (2.8) have lost the divergent form as a result of
modification and are no longer conservation laws. In contrast, the laws of conservation of mass, momentum, and
energy are not violated, although the last two laws have changed.

Similarly, modified equations differing from (2.8) only in certain signs are constructed from the initial sys-
tem (2.7) using identity (1.14):

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[(ukL)ui + q

(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
+ L

q
(1,A)
ka

∂uj
∂xk

= −ϕ(1,A)
ja ,

∂LT
∂t

+
∂(ukLT )
∂xk

=
q

(1,A)
ja ϕ

(1,A)
ja

T
, (2.9)

∂E

∂t
+
∂[uk(E + L) + uiq

(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0;

identity (1.16) leads to another possible modification:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[(ukL)ui − δikq

(1,A)
ja L

q
(1,A)
ja

]

∂xk
= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
− L

q
(1,A)
ja

∂uk
∂xk

= −ϕ(1,A)
ja ,

∂LT
∂t

+
∂(ukLT )
∂xk

=
q

(1,A)
ja ϕ

(1,A)
ja

T
, (2.10)

∂E

∂t
+
∂[uk(E + L− q(1,A)

ia L
q
(1,A)
ia

)]

∂xk
= 0.

We note that in constructing modifications containing the laws of conservation of mass, momentum, and energy, we
can use several identities (1.14)–(1.16) simultaneously. We give a possible example of a modification constructed in
this way:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[(ukL)ui − δikq

(1,A)
ja L

q
(1,A)
ja

+ q
(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
− L

q
(1,A)
ja

∂uk
∂xk

+ L
q
(1,A)
ka

∂uk
∂xj

= −ϕ(1,A)
ja , (2.11)

∂LT
∂t

+
∂(ukLT )
∂xk

=
q

(1,A)
ja ϕ

(1,A)
ja

T
,

∂E

∂t
+
∂[uk(E + L− q(1,A)

ja L
q
(1,A)
ja

) + uiq
(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0.
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The left sides of the above equations contain additional terms (relative to the initial system), which were used
earlier in constructing both Eqs. (2.9) and system (2.10).

Additional [to system (2.7)] terms of the modified systems (2.8)–(2.11) do not violate Galilean invariance
since the modification does not touch upon the first equation (the law of conservation of mass) and in all equations,
except for the last one, it uses only the derivatives ∂ui/∂xk, so that the additional terms are not changed when
constants are added to ui. In addition, it is easy to check that the additional terms are invariant under rotations.
The last equality in (2.11) is a consequence of all the preceding equalities.

We recall that we use the generating potential L of the special form (2.2).
3. Modifications Equivalent to Symmetric Hyperbolic Systems. If the generating potential is a

convex function of its arguments, then simple thermodynamically consistent systems of conservation laws can always
be written in the form of a symmetric hyperbolic system. Although this fact is generally known at present, we need
to dwell on it because this fact is used in investigation of the modified equations.

If a simple system does not include the last (energy) equation, which is a consequence of the remaining
equations, then this system can be written as follows [L = L(r1, r2, . . . , rN ), M (k) = ukL = M (k)(r1, r2, . . . , rN )]:

∂Lri
∂t

+
∂M

(k)
ri

∂xk
= fi (3.1)

(all unknowns here are renamed as ri). Equations (3.1) can be rewritten in quasilinear form

Lrirj
∂rj
∂t

+M (k)
rirj

∂rj
∂xk

= fi, (3.2)

so that the matrices of the coefficients at the derivatives turn out to be symmetric. The positive definiteness of the
matrix Lrirj follows from the assumption that the generating potential L is convex.

Describing the procedure of constructing modified equations in Sec. 2, we singled out constructions in which
additional terms are not introduced into the equalities that describe the law of conservation of momentum. It turns
out that in this case the system constructed can also be written in the form (3.1) but with modified potentials M (k),
and therefore, the justification of hyperbolicity based on consideration of its quasilinear version (3.2) remains valid.

We show the validity of this statement using as an example Eqs. (2.4) and (2.6), which were considered
earlier.

Equations (2.4) are written in a more detailed form using the Clebsch–Gordan coefficients:

∂L
q
(A)
α

∂t
+
∂(ukLq(A)

α
)

∂xk
+ δ

√
3

2A+ 1
G
α[k,b]
A[1,A]

∂r
(A)
b

∂xk
= −ϕ(A)

α ,

∂L
r
(A)
β

∂t
+
∂(ukLr(A)

β

)

∂xk
− δ
√

3
2A+ 1

G
β[k,a]
A[1,A]

∂q
(A)
a

∂xk
= −ψ(A)

β .

Using the properties of the Clebsch–Gordan coefficients

G
α[k,b]
A[1,A] = −Gb[k,α]

A[1,A] =
√

(2A+ 1)/3Gk[b,α]
1[A,A] = −

√
(2A+ 1)/3Gk[α,b]

1[A,A]

and setting

F (k) = δ(Gk1[A,A]r
(A), q(A)) ≡ δGk[b,α]

1[A,A]r
(A)
b q(A)

α ,

we can establish that if we modify a simple system as is indicated in (2.4), then in Eqs. (3.1) we need to use
the modified potentials M̂ (k) = M (k) + F (k) instead of the potentials M (k). Therefore, in the quasilinear formula-
tion (3.2), the elements M (k)

rirj are replaced by M̂ (k)
rirj , and it is evident that in this case the coefficient matrices remain

symmetric. The matrix of coefficients at the derivatives with respect to t does not change at all, thus remaining
symmetric and positive definite. Consequently, the modification considered preserves the symmetric hyperbolicity
of the equations. Eqs. (2.6) can be written in greater detail:

∂L
q
(A)
α

∂t
+
∂(ukLq(A)

α
)

∂xk
+ δ

√
3

2A+ 1
G
α[k,a]
A[1,A+1]

∂r
(A+1)
a

∂xk
= −ϕ(A)

α ,

∂L
r
(A+1)
β

∂t
+
∂(ukLr(A+1)

β

)

∂xk
+ δ

√
3

2A+ 3
G
β[k,b]
A+1[1,A]

∂q
(A)
b

∂xk
= −ψ(A+1)

β .
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Again using the properties of the Clebsch–Gordan coefficients√
3/(2A+ 1)Gα[k,a]

A[1,A+1] =
√

3/(2A+ 1)Ga[k,α]
A+1[1,A] = G

k[a,α]
1[A+1,A] = G

k[α,a]
1[A,A+1]

and setting

F (k) = δG
k[a,α]
1[A+1,A]q

(A)
a r(A+1)

α = δ(Gk1[A+1,A]q
(A), r(A+1)),

we see that the modification described is again reduced to replacement of the potentials M (k) by the corresponding
potentials M̂ (k) = M (k) + F (k), which, as was already noted, does not violate the symmetric hyperbolicity of the
equations.

However, it is not clear at all whether the constructions given at the end of Sec. 2, which include new
terms in the momentum flux, lead to hyperbolic modified equations. It is most probable that, in general, it is
not so. At the same time, hyperbolic modifications exist among systems with modified momentum, too. We show
that modifications of systems (2.8) and (2.11) can be written in the form of symmetric hyperbolic systems. This
reduction is based on the fact that Eqs. (2.8) and (2.11) have characteristics dxi/dt = ui — streamlines. The
relations along these characteristics can be found and used to symmetrize the coefficient matrices of the quasilinear
form of the above-mentioned equations.

We begin with construction of the relations along the streamlines for the equations of system (2.8). For this,
it suffices to use the following equalities from that system:

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
− L

q
(1,A)
ka

∂uj
∂xk

= −ϕ(1,A)
ja .

Differentiating each of these equalities with respect to xj and summing over j, we obtain the equation

∂

∂t

(
∂L

q
(1,A)
ja

∂xj

)
+

∂

∂xk

(
uk

∂L
q
(1,A)
ja

∂xj

)
= −

∂ϕ
(1,A)
ja

∂xj
. (3.3)

Comparing this equation with the law of conservation of mass

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0

and introducing the notation

D(A)
a =

1
Lq0

∂

∂xj
L
q
(1,A)
ja

, (3.4)

we see that

∂D
(A)
a

∂t
+ uk

∂D
(A)
a

∂xk
= − 1

Lq0

∂ϕ
(1,A)
ja

∂xj
. (3.5)

Using the notation (3.4) and differentiating, we transform the law of conservation of momentum

∂Lui
∂t

+
∂[(ukL)ui − q

(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0

into

∂Lui
∂t

+
∂(ukL)ui
∂xk

− L
q
(1,A)
ka

∂q
(1,A)
ia

∂xk
= q

(1,A)
ia

∂L
q
(1,A)
ka

∂xk
≡ q(1,A)

ia Lq0D
(A)
a .

After that, system (2.8) supplemented with equality (3.5) becomes:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

− L
q
(1,A)
ka

∂q
(1,A)
ia

∂xk
= Lq0q

(1,A)
ia D(A)

a ,

∂L
q
(1,A)
ia

∂t
+
∂(ukLq(1,A)

ia
)

∂xk
− L

q
(1,A)
ka

∂ui
∂xk

= −ϕ(1,A)
ia , (3.6)

∂LT
∂t

+
∂(ukLT )
∂xk

=
q

(1,A)
ja ϕ

(1,A)
ja

T
,

∂D
(A)
a

∂t
+ uk

∂D
(A)
a

∂xk
= − 1

Lq0

∂ϕ
(1,A)
ja

∂xj
.

185



This system differs from the simplest initial Galilean-invariant and thermodynamically consistent equations only in
the presence of the last equation and additional terms (the last terms) in some equations. Reducing the simplest
equations to a quasilinear form with symmetric coefficient matrices , we can easily see that this symmetry is
preserved after inclusion of the above-mentioned additional terms in the equations. The matrices at the derivatives
with respect to t do not change. This implies the symmetric hyperbolicity of Eqs. (3.6) but only if L is a convex
function of its arguments. It is easy to check that inclusion of the last equality in system (3.6) does not violate its
symmetric hyperbolicity as well.

The Cauchy problem for system (3.6) is uniquely solvable for all sufficiently smooth initial data, but equal-
ity (3.4) may fail on its solutions. But if the initial data satisfy equality (3.4), then the uniqueness of the solution
and a comparison of Eqs. (3.3) and (3.5) imply that (3.4) is fulfilled identically everywhere. Thus, the symmetric
hyperbolicity of one of the equivalent versions (3.6) of Eqs. (2.8) is justified.

Assuming that at the initial time we have D(A)
a = 0 and ϕ(1,A) = 0, we come to the following compatible

overdetermined system of conservation laws:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukLui + δikL− q(1,A)

ia L
q
(1,A)
ka

)

∂xk
= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
− ujLq(1,A)

ka

)

∂xk
= 0,

∂

∂xk
L
q
(1,A)
ka

= 0, (3.7)

∂LT
∂t

+
∂(ukLT )
∂xk

= 0,
∂E

∂t
+
∂[uk(E + L)− uiq(1,A)

ia L
q
(1,A)
ka

]

∂xk
= 0.

We recall that E = q0Lq0 + uiLui + q
(1,A)
ja L

q
(1,A)
ja

+ TLT − L, L = Λ(q0 + uiui/2, q(1,A), T ), and L is assumed to be
a convex function of its arguments.

A similar derivation of the relations along the streamlines for Eqs. (2.11) with zero right sides will be
described briefly. We use the equations of system (2.11)

∂L
q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
− L

q
(1,A)
ja

∂uk
∂xk

+ L
q
(1,A)
ka

∂uk
∂xj

= 0. (3.8)

Differentiating equalities (3.8) and introducing the notation

∂L
q
(1,A)
ka

∂xm
−
∂L

q
(1,A)
ma

∂xk
= −ekmjω(1,A)

ja ,

we can justify the equality

∂ω
(1,A)
ja

∂t
+
∂(ukω

(1,A)
ja − ujω(1,A)

ka )
∂xk

= 0, (3.9)

which is an analog of equality (3.3) used in the above analysis of Eqs. (2.8). In particular, it follows from (3.9) that
if the right sides are zeros and all ω(1,A)

ja are equal to zero at the initial time, then this equality will be preserved
subsequently. Reduction of Eqs. (2.11) with zero right sides (!!!) to the form of a symmetric hyperbolic system is
carried out under the assumption that ω(1,A)

ja = 0. This equality makes it possible to transform the equations of the
law of conservation of momentum

∂Lui
∂t

+
∂(ukLui + δikL− δikq(1,A)

ja L
q
(1,A)
ja

+ q
(1,A)
ia L

q
(1,A)
ka

)

∂xk
= 0

to a nondivergent but more convenient form:

∂Lui
∂t

+
∂(ukL)ui
∂xk

+ L
q
(1,A)
ia

∂q
(1,A)
ka

∂xk
− L

q
(1,A)
ka

∂q
(1,A)
ia

∂xk
= 0.
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As a result, we arrive at the following equations equivalent (under above the assumptions) to system (2.11):

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

+ L
q
(1,A)
ia

∂q
(1,A)
ia

∂xk
− L

q
(1,A)
ka

∂q
(1,A)
ka

∂xi
= 0,

(3.10)
∂L

q
(1,A)
ja

∂t
+
∂(ukLq(1,A)

ja
)

∂xk
+ L

q
(1,A)
ka

∂uk
∂xk
− L

q
(1,A)
ja

∂uk
∂xj

= 0,
∂LT
∂t

+
∂(ukLT )
∂xk

= 0.

Equalities (3.10) are now easily reduced to a quasilinear form with symmetric matrices of coefficients at the deriva-
tives with respect to t and xk, whence symmetric hyperbolicity follows in the case of a convex generating function L.

In conclusion, we give an overdetermined system of conservation laws which is similar to (3.7) and is equiv-
alent to Eqs. (2.11) supplemented with one more equation for the unknown n:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[ukLui + δik(L− q(1,A)

ja L
q
(1,A)
ja

) + q
(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0,

∂L
q
(1,A)
ja

∂t
+
∂(ulLq(1,A)

la

)

∂xj
= −ejlmulω(1,A)

ma ,
∂L

q
(1,A)
ka

∂xm
−
∂L

q
(1,A)
ma

∂xk
= −ekmjω(1,A)

ja ,

∂ω
(1,A)
ja

∂t
+
∂(ukω

(1,A)
ja − ujω(1,A)

ka )
∂xk

= 0,
∂Ln
∂t

+
∂(ukLn)
∂xk

= −ν,

∂LT
∂t

+
∂(ukLT )
∂xk

=
nν

T
,

∂E

∂t
+
∂[uk(E + L− q(1,A)

ja L
q
(1,A)
ja

) + uiq
(1,A)
ia L

q
(1,A)
ka

]

∂xk
= 0.

Specific examples from mathematical physics containing equations constructed from the elements described
in this and previous sections will be given in Sec. 4.

4. Two Concrete Examples. In this section we shall show how rather complex equations of mathematical
physics can be obtained from the simplest Galilean-invariant thermodynamically consistent conservation laws using
the modifications described in Secs. 2 and 3. The present study was carried out with the aim to systematize the
widest possible class of such equations and is a continuation of a series of studies on standardization of formulas
contained in various monographs on physics such as [6–8] and in a number of papers. The results of this work are
described in papers [2–4], which give equations written in generating potentials. In the present work, we confine
ourselves to generating potentials of special form and describe in detail the “constructions” of equations using those
potentials.

In Sec. 2, a modified system (2.11) is described. We dwell on the version that differs from (2.11) by
specification of the tensor variables q(1,A)

ja ; namely, we set q(1,0)
i0 = ji (i = 0,±1). Then, the system is written as

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[(ukL)ui − δikjmLjm + jiLjk ]

∂xk
= 0,

∂Lji
∂t

+
∂(ukLji)
∂xk

− Lji
∂uk
∂xk

+ Ljk
∂uk
∂xi

= 0,
∂LT
∂t

+
∂(ukLT )
∂xk

=
νn

T
, (4.1)

∂Ln
∂t

+
∂(ukLn)
∂xk

= −ν, ∂E

∂t
+
∂[uk(E + L− jmLjm) + umjmLjk ]

∂xk
= 0.

We also assume that

L = Λ(q0 + uiui/2, j−1, j0, j1, n, T ), E = q0Lq0 + ukLuk + jmLjm + nLn + TLT − L. (4.2)

It was shown in Sec. 3 that Eqs. (2.11) (with zero right sides) can be reduced to a symmetric hyperbolic system.
This reduction is based on additional relations that follow from the equations and in the version (4.2) have the form

∂ωr
∂t

+
∂(ukωr − urωk)

∂xk
= 0, (4.3)

ω−1 =
∂Lj1
∂x0

− ∂Lj0
∂x1

= 0, ω0 =
∂Lj−1

∂x1
− ∂Lj1
∂x−1

= 0, ω1 =
∂Lj0
∂x−1

−
∂Lj−1

∂x0
= 0. (4.4)
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Using new variables ωm, we can rewrite equations of the third group from system (4.1) in the form
∂Lji
∂t

+
∂(umLjm)

∂xi
− eilrulωr = 0. (4.5)

We recall that exactly these equations were used to derive relations (4.3).
We now subject Eqs. (4.5) and the penultimate equation of system (4.1) to one more modification, which,

in essence, coincides with the simplest version of modification of (2.7) from Sec. 2. We give its result:

∂Ln
∂t

+
∂(ukLn + jk)

∂xk
= −ν, ∂Lji

∂t
+
∂(umLjm + n)

∂xk
= 0. (4.6)

We note that the additional terms n and jk, which, during modification, were brought under the symbol of
the derivatives ∂/∂xk, do not violate the validity of Eqs. (4.3), which follow from (4.5) as well as from (4.6).

At the same time, as was noted in Sec. 2, the modification performed leads to the appearance of additional
terms in the energy fluxes. The energy equation becomes

∂E

∂t
+
∂[uk(E + L− jmLjm) + umjmLjk + njk]

∂xk
= 0.

Thus, as a result of the modifications described above, we come to the following overdetermined but compatible
system:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂[(ukL)ui − δikjmLjm + jiLjk ]

∂xk
= 0,

∂Lji
∂t

+
∂(umLjm + n)

∂xk
= 0,

∂Ljk
∂xm

− ∂Ljm
∂xk

= 0,
(4.7)

∂Ln
∂t

+
∂(ukLn + jk)

∂xk
= −ν, ∂LT

∂t
+
∂(ukLT )
∂xk

=
nν

T
,

∂E

∂t
+
∂[uk(E + L− jmLjm) + umjmLjk + njk]

∂xk
= 0.

The first two equations in system (4.7) model the laws of conservation of mass and momentum. The last
but one equation is the compensating equation for entropy, and the equation which precedes it is the equation for
the “chemical potential” n, whose gradient gives rise to superfluid flux j. The last equation in the system is the
law of conservation of energy.

System (4.7) is close to the formalization of the equations for superfluid helium described in [8] and schema-
tized in [4]. An additional equation for the “chemical potential” n is included in Eqs. (4.7), whereas in [8] its role was
played by q0. Unfortunately, in this case, the superfluid flux j enters in the first equation (the law of conservation
of mass), and one of the postulates underlying our investigation is thus violated. The justification of the Galilean
invariance in our work is based on this postulate.

We now turn to the compatible overdetermined system (3.7), which was constructed in Sec. 3 with the help
of one modification considered there. We again confine ourselves to the simplest version, setting A = 0 and using
the compact notation bk for the variables q(1,0)

k0 . At the same time, instead of system (3.7) we consider its simple
generalization to the case where the medium is characterized by two temperatures and terms describing viscous
dissipation and heat conduction are included in the momentum flux and in the energy equation:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂

∂xk

(
ukLui + δikL− biLbk + µ

∂ui
∂xk

)
= 0,

∂Lbi
∂t

+
∂(ukLbi − uiLbk)

∂xk
= 0,

∂

∂xk
Lbk = 0,

∂LT1

∂t
+
∂(ukLT1)
∂xk

=
K1

T 2
1

∂T1

∂xk

∂T1

∂xk
+K12

T2 − T1

T1
+

µ

T1

∂ui
∂xk

∂ui
∂xk

+
∂

∂xk

(K1

T1

∂T1

∂xk

)
, (4.8)

∂LT2

∂t
+
∂(ukLT2)
∂xk

=
K2

T 2
2

∂T2

∂xk

∂T2

∂xk
+K12

T1 − T2

T2
+

∂

∂xk

(K2

T2

∂T2

∂xk

)
,

∂E

∂t
+

∂

∂xk

[
uk(E + L) + umbmLbk −K1

∂T1

∂xk
−K2

∂T2

∂xk
+ ui

∂

∂xk

(
µ
∂ui
∂xk

)]
= 0.
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The viscosity µ, thermal conductivities K1 and K2, and the coefficient of thermal relaxation K12 are assumed to be
positive. Here we do not discuss the well-known facts concerning the consistency of the dissipative terms included
in the equations, which were discussed in [1] for a similar case. A detailed description of all possible versions of
account of dissipative processes in arbitrary systems of Galilean-invariant equations should be the subject of further
investigation.

In order to render the system of compatible conservation laws (4.8) specific, we specify the equation of state

E = E(ρ, S1, S2) = E(1)(ρ, S1) + E(2)(ρ, S2)

and set

q0 = E(ρ, S1, S2) + ρEρ(ρ, S1, S2) + S1E
(1)
S1

(ρ, S1) + S2E
(2)
S2

(ρ, S2)− ukuk/2,

T1 = E
(1)
S1
, T2 = E

(2)
S2
, L = ρ2Eρ(ρ, S1, S2) + bkbk/2.

In this case, it turns out that

Lq0 = ρ, Lui = ρui, LTj = ρSj ,

E = q0Lq0 + ukLuk + TjLTj + bkLbk − L = ρ(E(ρ, S1, S2) + ukuk/2) + bkbk/2

and equalities (4.8) are specified in the form known as the equations of two-temperature magnetic hydrodynamics
(the version describing a collisionless plasma in a certain range of parameters; see [9]). Summing up two penultimate
equalities in (4.8), we obtain

∂[ρ(S1 + S2)]
∂t

+
∂

∂xk

[
ρuk(S1 + S2)− K1

T1

∂T1

∂xk
− K2

T2

∂T2

∂xk

]
=
K1

T 2
1

∂T1

∂xk

∂T1

∂xk
+
K2

T 2
2

∂T2

∂xk

∂T2

∂xk
+K12

(T2 − T1)2

T2T1
+

µ

T1

∂ui
∂xk

∂ui
∂xk

> 0.

Thus, we arrive at the statement that can be formulated as the law of increase of total entropy.
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-00766).
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